BC电池解决方案

背接触(BC)电池技术通过将正负电极全部置于电池背面,彻底消除正面栅线遮光损失,实现更高的光吸收率和转换效率。根据2025年最新实验数据,BC电池的实验室效率已突破27.81%,远超TOPCon(26.1%)和HJT(25.9%)。这一突破得益于三大核心技术革新:

  • 激光图形化技术:替代传统光刻工艺,将生产成本降低60%,精度提升至±3μm,且无需耗材(见表1);
  • 单晶硅片优化:通过N型硅片纯度提升和电阻率控制,将电池寿命延长30%以上;
  • 组件封装革命:采用COB互联技术,减少焊带损耗90%以上,组件可靠性提升50%。

BC电池基础结构

BC电池的基本结构从上至下依次为:SiNx/SiO2 - n+ Si(掺磷)- Si基底 - p+(硼扩)/n++(磷扩) Si - SiO2/SiNx - 金属电极(叉指)。其中,n+ Si(掺磷)层利用场钝化效应降低表面少子浓度,从而降低表面复合速率;p+ Si(硼扩)层与N型硅基底形成p-n结,有效分流载流子;n++ Si(磷扩)层与n型硅形成高低结,增强载流子的分离能力,这是IBC电池的核心技术。SiO2/SiNx层在背面抑制IBC太阳电池的载流子复合,在正面则作为减反层提高发电效率。

表1:BC电池与传统技术关键参数对比

参数 传统PERC TOPCon BC技术
实验室效率 24.5% 26.1% 27.81%
量产成本(元/W) 0.95 1.05 1.10(预计2025年降至0.98)
抗阴影性能

相关FAQs

Q1:BC电池是否面临TOPCon的激烈竞争?
A1:短期内TOPCon凭借成熟产能仍占主流,但BC在效率(+1.8%)、LCOE(-16%)和场景适应性上的优势将推动其2025年后加速替代。

Q2:BC技术的主要挑战是什么?
A2:当前核心在于量产良率(需稳定在95%以上)和硅片纯度控制,但激光工艺进步正逐步解决这些问题。

Q3:BC电池是否适合大型地面电站?
A3:是的。其高双面率和抗PID特性尤其适合沙漠、山地等复杂环境,且跟踪支架适配性优于传统技术。

View as Grid List
Sort by
Display per page

WAFER PROFILER CVP21

The Wafer Profiler CVP21 is a handy tool to measure doping profiles in semiconductor layers by Electrochemical Capacitance Voltage Profiling (ECV-Profiling, CV-Profiling) in semiconductor research or production. This ECV Profiler (CV-Profiler, C-V-Profiler) furthermore is a very good choice to analyze or develop strategies for Photo-Electrochemical Wet Etching (PEC-Etching) of semiconductors
Call for pricing

TLM-SCAN+

TLM-SCAN+ Contact resistivity and more This compact instrument measures contact resistivity, finger line resistance, finger width, and finger height of a finished solar cell or on test structures. Motorized in all axes it is capable of creating maps of all these methods by pushing a single button. Four point probe heads for measuring the sheet resistance of thin diffused layers and resistivity of wafers make the TLM-SCAN+ a low-cost yet fast and high-quality four-point-probe mapper.
Call for pricing